Архивы: по дате | по разделам | по авторам

Чарльз Стросс: Недостижимый звёздный рубеж (часть 2)

АрхивМнения
автор : Чарльз Стросс   13.04.2010

Окончание статьи писателя Чарльза Стросса о перспективах освоения космоса. Если межзвёздные перелёты нереальны, то, возможно, удастся заселить хотя бы Солнечную систему?

- Окончание статьи британского писателя Чарльза Стросса о перспективах освоения космоса. Начало можно найти здесь.

Солнечная система после обсуждения огромности межзвёздного пространства кажется утешительно легкодоступной. Во всяком случае, на первый взгляд. Исследование собственной звёздной системы представляется почти очевидным занятием. Оно нам по силам, и мы уже начали его. Межпланетные полёты в будущих учебниках истории, вероятно, будут считаться одним из величайших научных достижений конца 20 - начала 21 веков.

Однако достаточно повнимательнее присмотреться к перспективам межпланетной колонизации, чтобы понять: с ней дела обстоят не менее мрачно.

Грубо говоря, ракеты нам тут не помогут.

Согласно оптимистичным прогнозам, разрабатываемые сейчас недорогие ракетоносители позволят поддерживать присутствие на Луне с транспортными расходами в пределах 15 тысяч долларов за килограмм. Это сделает межпланетные полёты доступными. По более дерзким оценкам выходит, что если расходы удастся урезать до суммы, превышающей стоимость топлива и окислителя лишь втрое (а это значит, что обсуждаемый космический аппарат должен быть многоразовым и одновременно очень дешёвым), то нижний предел снизится до 165 долларов за килограмм груза, доставленного на Луну. При таких ценах отправка космонавта на базу "Луна-1" обойдётся не дороже, чем авиаполёт из Великобритании в Новую Зеландию первым классом. Проблема только в том, что все эти вычисления - полная чушь.

У нас, приматов, есть определённые технические ограничения. Не стоит недооценивать нашу склонность безнадёжно выходить из строя при столкновении с предельными значениями температуры, давления и парциального давления кислорода. Хотя количество кислорода, воды и пищи, которые человек потребляет в течение дня, не кажутся такими уж серьёзными (скорее всего, если экономить и перерабатывать всё, что только возможно, выйдет не больше десяти килограммов), паразитный вес, необходимый для того, чтобы наша обезьяна-космонавт не "взорвалась", исчисляется тоннами.

Российский скафандр "Орлан-М" (который, как считают некоторые, лучше всех аналогов, которые придумали в NASA) весит 112 килограммов. Это задаёт нижний предел нашим инфраструктурным требованиям. Настоящий обитаемый блок потребует куда больше. Даже при 165 долларах за килограмм к цене того воображаемого авиабилета первого класса придётся добавить весьма существенные расходы на доставку багажа. Даже сами авторы статьи, из которой я взял эту цифру, соглашаются, что 2000 долларов за килограмм выглядят разумнее.

Как ни старайся, отправка единственного туриста на Луну обойдётся самое малое в 50 тысяч долларов, а более реалистичная цифра ближе к миллиону долларов. И это без учёта того, что нам ещё придётся везти его обратно на Землю.

Луна находится в 1,3 световых секундах от нас. Правильнее посылать туда не людей, а дистанционно управляемых роботов. Расстояние не так велико, чтобы мы не могли контролировать роботов напрямую, но недостаточно мало, чтобы стоимость доставки еды и прочих плотских радостей для людей-исследователей не достигала астрономических величин.

Возможно, место для людей и найдётся на лунной базе, но только до того момента, пока наша робототехника не сделает шаг вперёд по сравнению с тем, что мы имеем сейчас. Работа Центра управления полётами станет куда проще, если ему придётся иметь дело только с парой механических рук и камерой высокого разрешения, которые не разговаривают и которым не нужно ходить в туалет или спать.

Если посмотреть на остальную Солнечную систему, то картина становится ещё грустнее. Марс... как бы это сказать... в голову приходит фраза "туристический курорт" и немедленно направляется в тот же угол, где находится "пустыня Гоби". "Я поверю в людей, заселяющих Марс, не раньше, чем люди начнут заселять пустыню Гоби, - верно заметил Брюс Стерлинг. - Гоби в тысячи раз приветливее Марса, а добраться до неё в пятьсот раз дешевле и проще. Никто не пишет романтическую фантастику про Гоби, потому что не существует ни одной причины ехать и жить там - и это абсолютно очевидно для каждого. Она уродлива и негостеприимна, а у поездки туда нет ни одного шанса окупиться. С Марсом - то же самое. Мы просто идеализируем Марс, потому что туда труднее попасть".

Исследовать Марс - прекрасно и замечательно. Собственно говоря, наших роботов там и так уже полно. Но в качестве потенциального места жительства у него есть некоторые недостатки: лёгкая нехватка пригодного для дыхания воздуха, антарктические морозы по ночам, пылевые бури, скорость ветра во время которых составляет 170 м/с - и так далее по пунктам.

Впрочем, одна хорошая причина для того, чтобы посылать людей на Марс, всё же есть - расстояние. Свету требуется целых 30 минут, чтобы добраться до этой планеты, а это значит, что управлять роботами на её поверхности с Земли крайне неудобно. Либо нам нужны автономные станции, способные принимать решения и следить за их выполнением без надзора человека, либо космонавты на орбите или поверхности планеты, чтобы командовать бригадами роботов.

С другой стороны, Марс расположен намного дальше Луны, и его сила тяжести существенно больше. Это повышает стоимость каждого килограмма, доставленного на поверхность планеты. Возможно, какой-нибудь FedEx сумеет снизить её до 20000 долларов за килограмм, но я бы загадывать не стал.

Позвольте повториться: ракеты нам не помогут. По крайней мере, на обычных - и хотя ядерная реактивная тяга может сыграть свою роль в дальнем космосе, чаще придётся идти на сделку между тягой и эффективностью. Чем эффективнее ваш мотор, тем слабее его тяга. Некоторые технологии, такие как электромагнитный ускоритель с изменяемым удельным импульсом, показывают неплохую гибкость, но они не годятся для того, чтобы оторвать корабль от Земли и вывести его на орбиту. Они могут полезны только при старте с низкой орбиты.

Впрочем, как и в случае с межзвёздными полётами, есть и другие варианты. Космические лифты, если мы их построим, устранят множество упомянутых мной проблем. Анализ энергетических затрат космических лифтов позволяет предположить, что стоимость вывода одного килограмма груза на геосинхронную орбиту может составлять вполне приемлемые 350 долларов, причём без всяких волшебных палочек (хотя, конечно, они бы не помешали при конструировании и выборе материалов для самого лифта). Так что мы вполне можем начинать готовиться к отпускам на орбите в условиях невесомости - небесплатным, конечно, но всё же.

Космический лифт очень привлекателен, поскольку это масштабируемая технология. Можно использовать один для доставки на орбиту материалов для постройки других. В перспективе, космические лифты могут дать нам относительно разумно стоящий способ выхода в космос, и позволить поездки на Луну, стоящие дешевле 100 тысяч долларов по нынешнему курсу. Здесь-то колонизация могла бы начать выглядеть привлекательно с экономической точки зрения, но...

Мы - люди. В результате эволюции вышло так, что для процветания нам нужна строго определённая среда, которую можно найти, вероятно, лишь на одной десятой площади нашей планеты (70% Земли покрывают океаны, и, хотя мы способны выжить с помощью специальных приспособлений в чрезвычайно неприветливой обстановке, будь то Арктика, пустыня или горы, мы плохо приспособлены к такой среде).

Космос - крайне плохая среда для жизни. Простое падение давления способно убить команду космического корабля за минуты. И это не единственная угроза. Космическая радиация представляет собой серьёзный риск для долговременных межпланетных экспедиций и, в отличие от солнечной радиации и радиации от корональных выбросов массы, от её высокоэнергетических частиц защитить космонавтов чрезвычайно сложно. И, наконец, время в пути. Два с половиной года до системы Юпитера, шесть месяцев до Марса.

Подойти к решению этих проблем можно по-разному. Возможен и медицинский подход. Долговременное радиационное воздействие ведёт к раку, но если мы разработает продвинутую методику лечения рака, не вызывающую побочных эффектов, это будет не так уж важно. Ещё лучше, если сероводородный анабиоз окажется практически применим; тогда мы просто могли бы проспать всё путешествие.

Но даже в этом случае, если уж на то пошло, не предвидится ни единой экономически оправданной деятельности, для которой понадобилось бы заселять другую планету или астероид и жить на них до самой смерти. Когда нужные нам ресурсы находятся во враждебной среде, для их добычи мы строим специальную инфраструктуру (например, нефтяные платформы). Переезжать в эту среду вместе с семьями никто не спешит. Работу, как правило, организуют вахтовым методом: когда вахта заканчивается, рабочие отправляются домой. За пределами нефтяной платформы всё равно ничего нет - только воющие ветра североатлантических заливов и ледяная вода, которая убьёт вас за пять минут, если вы в ней окажетесь. И это, по-моему, лучшая метафора для освоения космоса.

Большая часть трудоёмких работ за миллионы километров от Земли будет выполняться роботами под присмотром людей-операторов, изнемогающих от желания вернуться, наконец, домой и потратить тяжёлым трудом заработанные деньги. А ближе к дому коммерциализация космоса будет постепенной и медленной. Её будет подталкивать наша растущая зависимость от навигационных и метеорологических спутников, спутников связи и космического туризма. Купольным городам на Марсе придётся подождать волшебной палочки или даже двух - они нужны, чтобы сделать что-то с климатом или произвести человека, способного существовать в неприветливой безвоздушной среде.

Осваивайте пустыню Гоби или Северную Атлантику зимой, а уж потом поговорим о Солнечной системе.

- Публикуется с разрешения автора. Оригинал.

© ООО "Компьютерра-Онлайн", 1997-2019
При цитировании и использовании любых материалов ссылка на "Компьютерру" обязательна.