Путеводитель по процессорам Intel Sandy Bridge (часть 1)
АрхивПлатформаНовая микроархитектура Sandy Bridge, представленная 3 января, к концу 2011 года должна стать общей для всех процессоров Intel, за исключением семейства Atom.
В предыдущем "Путеводителе по новым процессорам Intel", опубликованном примерно год назад, мы говорили о микроархитектуре Nehalem, пришедшей на смену Core в конце 2008 года. В этом обзоре речь пойдёт об архитектуре Sandy Bridge, которая в самое ближайшее время должна полностью заменить Nehalem.
На сегодняшний день чипы на базе Sandy Bridge представлены во всех линейках процессоров Intel, включая серверные Xeon, дестопные и мобильные Core i3/35/i7, Pentium и Celeron и "экстремальные" Core i7 Extreme. Незадолго до публикации этой статьи, 22 мая 2011 года, были представлены ещё семь новых процессоров на основе Sandy Bridge.
В чём же заключаются принципиальные отличия Sandy Bridge от Nehalem и в чём состоят особенности и преимущества новой микроархитектуры Intel? Вкратце эти отличия таковы: обновлённое графическое ядро в составе "системного агента" расположено на одном кристалле с вычислительным, предусмотрены новый буфер микрокоманд L0, разделяемый кэш L3, модернизированная технология Turbo Boost, расширенный набор инструкций SIMD AVX и переработанный двухканальный контроллер оперативной памяти DDR3 1333 МГц. Вместе с новой архитектурой появился и новый процессорный разъём LGA 1155.
Одно из главных конструктивных отличий Sandy Bridge от Nehalem - размещение вычислительных ядер и северного моста (системного агента) на одном кристалле. Напомним, что в Nehalem сам ЦП и северный мост располагались под общей крышкой, но фактически размещались на самостоятельных чипах, которые, к тому же, были выполнены по разным технологическим нормам: ЦП - по 32-нм, а северный мост - по 45-нм. В Sandy Bridge это единый кристалл, выполненный по 32-нм техпроцессу, на котором находятся вычислительные ядра, графическое ядро, контроллеры оперативной памяти, PCI Express, электропитания (Power Control Unit, PCU) и блок видеовыхода.
Новый набор SIMD-инструкций в чипах Sandy Bridge получил название AVX - Advanced Vector Extensions, то есть "расширенные векторные инструкции". Фактически это очередное поколение SIMD-инструкций (Single Instruction, Multiple Data - "одиночный поток команд, множественный поток данных" SSE5, альтернативная набору x86, разработанному в AMD. Разрядность регистров XMM в инструкциях AVX увеличен вдвое с 128 до 256 бит, появились 12 новых инструкций с поддержкой четырёхоперандных команд. Поддерживаются технология аппаратного шифрования Advanced Encryption Standard (AES) и система виртуализации Virtual Machine Extensions (VMX).
Несмотря на схожую конструкцию, у чипов Sandy Bridge больше исполнительных блоков, чем у Nehalem: 15 против 12 (см. блок-схему). Каждый исполнительный блок подключён к планировщику инструкций через 128-битный канал. Для выполнения новых инструкций AVX, содержащих 256-разрядные данные, одновременно используются два исполнительных блока.
Чипы Sandy Bridge cпособны обрабатывать до четырёх инструкций за такт благодаря четырём декодерам, встроенным в блоки выборки команд. Эти декодеры преобразуют инструкции x86 в простые RISC-подобные микроинструкции.
Важнейшее нововведение в процессорах Sandy Bridge - это так называемый "кэш нулевого уровня" L0, в принципе отсутствовавший в процессорах предыдущего поколения. Этот кэш способен хранить до 1536 декодированных микроинструкций: его смысл заключается в том, что когда исполняемая программа входит в кольцевой цикл, то есть повторно выполняет одни и те же инструкции, не требуется заново декодировать одни и те же инструкции. Такая схема позволяет заметно повысить производительность: по оценкам специалистов Intel, L0 используется в 80% машинного времени, то есть в подавляющем большинстве случаев. Кроме того, при использовании L0 отключаются декодеры и кэш-память первого уровня, а чип потребляет меньше энергии и выделяет меньше тепла.
В связи с появлением в чипах Sandy Bridge "кэша нулевого уровня" часто вспоминают трассировочный кэш (trace cache) "ветеранов гонки гигагерц" - процессоров Pentium 4 на базе архитектуры NetBurst. Между тем, эти буферы работают по-разному: в трассировочном кэше инструкции записываются точно в таком порядке, в каком они исполнялись, поэтому в нём могут несколько раз повторяться одни и те же инструкции. В L0 хранятся единичные инструкции, что, разумеется, более рационально.
Претерпел заметные изменения блок предсказания ветвлений, получивший буфер предсказания результата ветвлений (branch target buffer) удвоенного объёма. Кроме того, в буфере теперь используется специальный алгоритм сжатия данных, благодаря чему блок способен подготавливать большие объёмы инструкций, тем самым повышая производительность расчётов.
Подсистема памяти в Sandy Brigde была также оптимизирована для работы с 256-битными инструкциями AVX. Напомним, что в Nehalem использовались выделенные порты загрузки, хранения адресов и хранения данных, привязанные к отдельным дисптчерским портам, что означает возможность загрузки 128 бит данных из кэш-памяти L1 за такт. В Sandy Brigde порты загрузки и хранения при необходимости могут изменять назначение и одновременно выступать в роли пары портов загрузки или хранения, что позволяет работать с 256 битами данных за такт.
Для связи компонентов чипа, то есть вычислительных ядер, кэш-памяти L3, графического ядра и системного агента (контроллеров памяти, PCI Express, питания и дисплея), Sandy Bridge используется кольцевая шина (ring interconnect). За основу была взята скоростная шина QPI (Quick Path Interconnect, пропускная способность до 6,4 Гбайт/с на частоте 3,2 ГГц), впервые реализованная в чипах Nehalem Lynnfield (Core i7 9xxx для Socket LGA1366), адресованных энтузиастам.
По сути кольцевая шина в Sandy Bridge представляет собой четыре 32-байных кольца: шины данных, шины запросов, шины подтверждения и шины мониторинга. Обработка запросов осуществляется на частоте работы вычислительных ядер, при этом при тактовой частоте 3 ГГц пропускная способность шины достигает 96 Гбайт в секунду. При этом система автоматически определяет кратчайший путь передачи данных, обеспечивая минимальную латентность.
Использование кольцевой шины позволило иным способом реализовать кэш-память третьего уровня L3, которая в Sandy Bridge получила название LLC (Last Level Cache, то есть "кэш последнего уровня"). В отличие от Nehalem, здесь LLC не является общим для всех ядер, но при этом он может при необходимости распределяться между всеми ядрами, а также графикой и системным агентом. Важно отметить, что хотя для каждого вычислительного ядра выделен свой сегмент LLC, этот сегмент не привязан жёстко к "своему" ядру и его объём может посредством кольцевой шины распределяться между другими компонентами.
При переходе на Sandy Bridge в Intel присвоили всем компонентами центрального процессора, которые не относятся к собственно вычислительным ядрам, общее названием System Agent, то есть "системный агент". Фактически это всё компоненты так называемого "северного моста" набора системной логики, однако это название всё-таки больше подходит отдельной микросхеме. В применении к Nehalem использовалось странное и явно неудачное наименование "Uncore", то есть "неядро", так что "системный агент" звучит намного уместнее.
К основным элементам "системного агента" следует отнести модернизированный двухканальный контроллер оперативной памяти DDR3 до 1333 МГц, контроллер PCI Express 2.0 с поддержкой одной шины x16, двух шин x8 или одной шины x8 и двух x4. В чипе имеется специальный блок управления питанием, на основе которого реализована технология автоматического разгона Turbo Boost нового поколения. Благодаря этой технологии, учитывающей состояние как вычислительных, так и графических ядер, чип при необходимости может существенно превышать свой термопакет на время до 25 секунд без повреждения процессора и ущерба для работоспособности.
В Sandy Bridge используются графические процессоры нового поколения Intel HD Graphics 2000 и HD Graphics 3000, которые могут состоять из шести или двенадцати исполнительных блоков (execution units, EU), в зависимости от модели процессора. Номинальная тактовая частота графики составляет 650 или 850 МГц, при этом она может повышаться до 1100, 1250 или 1350 МГц в режиме Turbo Boost, который теперь распространяется и на видеоускоритель. Графика поддерживает программный интерфейс Direct X 10.1 - разработчики сочли излишней поддержку Direct X 11, справедливо посчитав, что поклонники компьютерных игр, где действительно востребован этот API, в любом случае предпочтут значительно более производительную дискретную графику.
Маркировка процессоров Sandy Bridge довольно проста и логична. Как и раньше, она состоит из цифровых индексов, которые в некоторых случаях сопровождаются буквенным. Отличить Sandy Bridge от Nehalem можно по названию: индекс новых чипов четырёхзначный и начинается с двойки ("второе поколение"), а старых - трёхзначный. К примеру, перед нами процессор Intel Core i5-2500K. Здесь "Intel Core" означает марку, "i5" - серию, "2" - поколение, "500" - индекс модели, а "K" - буквенный индекс.
Что касается буквенных индексов, то по чипам с микроархитектурой Nehalem известен один из них это "S" (процессоры i5-750S и i7-860S). Он присваивается чипам, ориентированным на домашние мультимедийные машины. Процессоры с одинаковым числовым индексом отличаются тем, что модели с буквенным индексом "S" работают на чуть меньшей номинальной тактовой частоте, но "турбочастота", достигаемая при автоматическом разгоне Turbo Boost, у них одинакова. Иными словами, в штатном режиме они экономичнее, а их система охлаждения тише, чем у "стандартных" моделей. Все новые десктопные Core второго поколения без индексов потребляют 95 Вт, а с индексом "S" - 65 Вт.
Модификации с индексом "T" работают на ещё более низкой тактовой частоте, чем "базовые", при этом "турбочастота" у них тоже ниже. Термопакет такие процессоров составляет всего 35 или 45 Вт, что вполне сравнимо с TDP современных мобильных чипов.
И, наконец, индекс "K" означает разблокированный множитель, что позволяет беспрепятственно разгонять процессор, повышая его тактовую частоту.
Мы познакомились с общими техническими решениями, реализованными в "настольных" процессорах с архитектурой Sandy Bridge. Во второй части мы поговорим об особенностях разных серий, изучим актуальный модельный ряд и дадим рекомендации, какие конкретные модели можно считать лучшими покупками в своём классе.
Читайте далее: Путеводитель по процессорам Intel Sandy Bridge (часть 2)