Магнетизм горячей точки
АрхивНакопителиSeagate продолжает разработку новой технологии магнитной записи, известной под названием HAMR (Heat Assisted Magnetic Recording, то есть магнитная запись с помощью нагрева).
Как сообщает журнал Scientific American, калифорнийская компания Seagate Technology, крупнейший в мире производитель жестких дисков, продолжает разработку новой технологии магнитной записи, которую она впервые продемонстрировала в августе 2002 года. Эта технология известна под названием HAMR (Heat Assisted Magnetic Recording, то есть магнитная запись с помощью нагрева).
HAMR задумана как усовершенствование технологии перпендикулярной записи информации на магнитных носителях, которая и сама по себе еще очень даже нова. Пионером массового производства жестких дисков под такую запись стала корпорация Toshiba, объявившая прошлым летом о начале их выпуска. Ее примеру быстро последовали и другие ведущие производители винчестеров, в том числе Seagate. При использовании этой технологии намагниченные участки ориентированы ортогонально плоскости диска. Это нововведение позволило заметно уплотнить упаковку информации по сравнению с продольной записью, при которой векторы намагниченности ячеек, хранящих отдельные биты, располагаются параллельно плоскости диска. Максимальная плотность, достигнутая на основе продольной записи, не превышает 100 гигабит на квадратный дюйм. Первое поколение винчестеров с перпендикулярной записью обеспечивает 130 гигабит на квадратный дюйм, однако уже имеются экспериментальные носители, способные хранить на той же площади примерно вдвое больше информации. Руководитель технического отдела корпорации Seagate Марк Крайдер (Mark Kryder) считает, что уменьшение размеров элементарных ячеек позволит через пять-десять лет довести плотность перпендикулярной записи до 500–700 гигабит на квадратный дюйм.
Однако более значительное повышение плотности записи в рамках этой технологии уже не представляется возможным. Дальнейшее снижение размеров носителей отдельных битов приведет к их магнитной нестабильности, обусловленной достижением так называемого суперпарамагнитного предела. Дело здесь в следующем. Очень малые ферромагнитные частицы (размером менее 10 нм) при температурах ниже точки Кюри представляют собой единичные домены, обладающие однородной намагниченностью. Однако направление намагниченности каждого такого домена уже не остается неизменным, а хаотически меняется из-за тепловых флуктуаций. Этот эффект аналогичен случайным колебаниям векторов магнитных моментов атомов парамагнетиков под воздействием теплового движения и потому называется суперпарамагнетизмом.
Суперпарамагнетизм ставит естественный верхний предел плотности любой магнитной записи. Однако он не абсолютен - в том смысле, что зависит от технологии записи и структуры носителя. Принято считать, что суперпарамагнитный предел продольной записи вряд ли превышает 200 гигабит на квадратный дюйм, а перпендикулярной - один терабит. Для преодоления этого порога потребуются более стабильные ферромагнитные материалы, обладающие намного большей коэрцитивной силой (характеризует интенсивность размагничивающего поля) по сравнению с используемыми в настоящее время. Но все дело в том, что такие материалы требуют для перемагничивания куда более сильных полей, нежели те, которые генерируют современные магнитные головки. Однако коэрцитивную силу можно снизить в десятки раз с помощью быстрого нагрева зоны записи, за которым должно последовать столь же быстрое охлаждение, стабилизирующее намагниченность и тем самым сохраняющее информацию.
Именно эту задачу и решает технология HAMR. Поверхность диска нагревается лазерным лучом, который с помощью системы линз фокусируется в пятнышко очень малого диаметра. Магнитное поле пишущей головки намагничивает только эту зону засветки, не влияя на магнитные характеристики окружающих участков.
Легко видеть, что фактически мы имеем дело с глубокой модификацией давно известной системы магнитооптической записи. О деталях этой технологии - в частности, о специфике используемых высококоэрцитивных материалов - пока мало что известно (хотя в печать проникали сведения, что Seagate делает ставку на самоупорядочивающиеся магнитные решетки на основе железо-платиновых наночастиц). Расчеты показывают, что таким способом можно повысить плотность упаковки информации до 50 терабит на квадратный дюйм. Этого достаточно, чтобы поместить на винчестер ноутбука тексты всех книг, газет и журналов, хранящихся в любой из крупнейших библиотек мира.
В заключение напомню, что дисковым магнитным носителям исполнилось ровно полвека. 13 сентября 1956 года корпорация IBM начала поставки компьютера RAMAC 305 с первым в мире ЗУ этого типа (на фото). Информация записывалась на пятидесяти алюминиевых дисках диаметром 24 дюйма, покрытых с обеих сторон оксидом железа. При весе 971 кг суммарный объем памяти нового устройства составлял всего лишь 4,4 мегабайта. Любопытно, что конструкторы RAMAC рассматривали возможность как продольной, так и поперечной записи, однако остановились все же на первой технологии, сочтя ее более простой. С тех пор плотность записи на серийных дисковых ЗУ увеличилась примерно в 65 млн. раз.
По материалам еженедельника "Компьютерра"