Архивы: по дате | по разделам | по авторам

Инфузорное программирование

Архив
автор : Киви Берд   21.09.2001

Во второй декаде сентября в Праге прошла 6-я «Европейская конференция по искусственной жизни» - междисциплинарный форум, на который собираются ученые, изучающие природу и перенимающие в своих исследованиях ее «творческий опыт».

Например, исследователи из голландского «Центра природных вычислений» при Лейденском университете полагают, что, освоив некоторые приемы генетических манипуляций, заимствованные у простейших одноклеточных организмов - ресничных инфузорий, человечество сможет воспользоваться гигантским вычислительным потенциалом, скрытым в молекулах ДНК.

Ресничные обитают на Земле, по меньшей мере, два миллиарда лет, их обнаруживают практически повсюду, даже в самых негостеприимных местах. Директор Центра Гжегож Розенберг (Grzegorz Rozenberg), называет эти инфузории «одним из наиболее успешных организмов на Земле». Ученые объясняют такую «удачливость» чрезвычайно эффективными механизмами манипуляции собственной ДНК, позволяющими инфузориям приспосабливаться практически к любой среде обитания.

Уникальность ресничных в том, что их клетка имеет два ядра - одно большое, «на каждый день», где в отдельных нитях хранятся копии индивидуальных генов; и одно маленькое, хранящее в клубке используемую при репродукции единственную длинную нить ДНК со всеми генами сразу. В ходе размножения «микроядро» используется для построения «макроядра» нового организма. В этом ключевом процессе и происходят чрезвычайно интересные для ученых «нарезание» ДНК микроядра на короткие сегменты и их перетасовка, гарантирующие то, что в макроядре непременно окажутся нити с копиями всех генов.

Розенбергом и его коллегами установлено, что способ, с помощью которого создаются эти фрагменты, удивительно напоминает технику «связных списков», издавна применяемую в программировании для поиска и фиксации связей между массивами информации. Более глубокое изучение репродуктивной стратегии ресничных инфузорий при сортировке ДНК открывает новые и интересные методы «зацикливания», сворачивания, исключения и инвертирования последовательностей.

Напомним, что в 1994 году Леонардом Эдлманом (Leonard Adleman) экспериментально было продемонстрировано, как с помощью молекул ДНК в единственной пробирке можно быстро решать классическую комбинаторную «задачу про коммивояжера» (обход вершин графа по кратчайшему маршруту), «неудобную» для компьютеров традиционной архитектуры. Результаты же экспериментов ученых из лейденского центра дают основания надеяться, что в недалеком будущем ресничные инфузории можно будет использовать для реальных ДНК-вычислений.

А вот английские исследователи из компании British Telecom пришли к выводу, что изучение поведения колоний бактерий дает ключ к решению сложнейшей задачи упорядочивания коммуникационных сетей.

Для описания ближайшего будущего компьютеров сегодня все чаще привлекают популярную концепцию «всепроникающих вычислений» - идею о гигантской совокупности микрокомпьютеров, встроенных во все предметы быта и незаметно взаимодействующих друг с другом. В этой единой беспроводной сети будет увязано все: кухонная техника, бытовая электроника, следящие за микроклиматом сенсоры в комнатах, радиомаяки на детях и домашних животных… Список этот можно увеличивать бесконечно. Но сейчас добавление каждой новой «умной штучки» отнимает массу времени, чтобы взаимно подстроить работу этого устройства и уже сформировавшейся конфигурации. В концепции же будущего, поскольку хозяева дома, по определению, не обладают ни временем, ни знаниями для настройки совместной работы всей этой армии бесчисленных «разумных вещей», изначально предполагается способность системы к самоорганизации. Поэтому достаточно естественно, что взгляд ученых устремился к природе, где подобные задачи решены давно и успешно. В частности, эксперименты исследователей British Telecom показали, что их система, имитирующая поведение колонии бактерий в строматолитах 1, способна поддерживать работу сети из нескольких тысяч устройств, автоматически управляя большими популяциями отдельных элементов.

Для симуляции функционирования такой колонии британскими учеными была создана сеть из трех тыс. узлов. Основой самоорганизации стало присвоение различных приоритетов рассылаемым по сети пакетам данных. Например, высший приоритет получили «информационные» пакеты, доносящие послания от одного узла к другому (кроме них в системе рассылаются еще «управляющие», «конфигурирующие» и прочие пакеты), поэтому ими занимаются устройства, имеющие в данный момент наилучшие связи с максимальным числом элементов сети.

В British Telecom полагают, что воплощение экспериментальной концепции в реальных продуктах можно ожидать уже через пять-шесть лет.

Еще одна любопытная разработка была представлена на конференции бельгийскими исследователями под руководством профессора Марко Дориго (Marco Dorigo). Они продемонстрировали, что программы, имитирующие стратегию поведения муравьиного сообщества, могут успешно управлять работой сложных компьютерных сетей.

Рыская в поисках корма, муравьи-разведчики оставляют за собой меченую феромонами дорожку. При этом зачастую к одному источнику пищи прокладывается сразу несколько троп, но разведчик, открывший самую короткую тропинку, возвращается быстрее и уводит за собой соплеменников. Выделяемые ими феромоны делают тропку более пахучей, чем остальные - в результате самая выгодная тропа быстро становится самой популярной. Учёные взяли эту тактику на вооружение: созданные ими программные агенты случайным образом «прозванивают» каналы связи между различными узлами сети и метят «тропинки» цифровыми «феромонами», на основании чего определяют оптимальный маршрут для передачи пакетов данных из одной точки в другую.

Практические испытания проводились в сетях Национального научного фонда США и японской корпорации NTT. Синтетические «муравьи» должны были, ничего не зная о конфигурации сети, отыскать кратчайшую дорогу от одного узла к другому. Быстро исследовав сеть, агенты определили её строение и вскоре уже могли «подсказать» любому информационному пакету к какому следующему узлу ему нужно направиться, чтобы достичь своей цели быстрее. Иначе говоря, был реализован механизм высококачественного интеллектуального роутинга, причем при возникновении различных «заторов» в сети «искусственные муравьи» реконфигурировали схему роутинга быстрее, чем традиционные решения.

Как считают авторы, их разработка может использоваться и для выполнения других неординарных задач, например динамической организации снабжения товаром в сложной торговой сети.

[i41316]


1 (обратно к тексту) - Бактерии в строматолитах самоорганизуются и создают крупные рабочие сообщества, хотя ни одна из отдельно взятых особей за это не отвечает. Эти колонии привлекают обостренный интерес ученых, поскольку характеризуются высокой надежностью и устойчивостью, быстро восстанавливаясь при физических повреждениях или изменениях в окружающей среде. Одно из важных свойств колонии - бактерии принимают на себя различные роли в зависимости от того, где именно они в данный момент находятся, но при этом все наследуют один и тот же постоянный генотип.
© ООО "Компьютерра-Онлайн", 1997-2024
При цитировании и использовании любых материалов ссылка на "Компьютерру" обязательна.