Архивы: по дате | по разделам | по авторам

Сияющие высоты геномных технологий

Архив
автор : Светлана Боринская   13.10.2003

К успехам биологии конца ХХ века, символизирующим прогресс науки, относятся открытия, ставшие научными сенсациями, и разработанные на их основе технологии, которые позволяют манипулировать генным материалом всех живых существ — от бактерий до человека.

Светлана Боринская
кандидат биологических наук, старший научный сотрудник Института общей генетики РАН (Москва). Область научных интересов — генетическая эволюция человека.

Николай Янковский
Доктор биологических наук, заведующий лабораторией анализа генома того же института, профессор МГУ, член Всемирного совета по исследованию генома человека (HUGO). Область научных интересов — структура и разнообразие генома человека.


К успехам биологии конца ХХ века, символизирующим прогресс науки, относятся открытия, ставшие научными сенсациями, и разработанные на их основе технологии, которые позволяют манипулировать генным материалом всех живых существ — от бактерий до человека. Это дает надежду на решение множества стоящих перед человечеством проблем (разработку новых средств диагностики и лечения болезней, продление жизни человека, обеспечение продовольствием) и в то же время вызывает опасения, что внедрение биотехнологий может нарушить равновесие природных экосистем и привести к катастрофическим последствиям. Современная биосфера есть результат миллиардов лет эволюции. Достаточно ли человеку пятидесяти лет развития генных технологий, чтобы быть уверенным, что его вмешательство не вызовет глобального экологического кризиса? Чем в связи с этим пугают людей? Утратой биологического разнообразия в результате неконтролируемой экспансии созданных человеком генных конструкций. Замещением сельскохозяйственных сортов растений и пород животных немногочисленными генетически модифицированными организмами в результате монополизации источников сортов и пород. Снижением жизнеспособности будущих поколений людей в результате массового осуществления медико-генетических мероприятий. Обоснованы ли эти страшилки? Что действительно можно ждать от этих технологий?

Как устроен геном и как он работает

Программа развития организма записана в его генетическом коде. Геном — это весь текст данного организма, записанный в ДНК четырьмя буквами-нуклеотидами. Самый короткий текст из свободно живущих организмов у бактерии микоплазм — 600 тысяч знаков. В геноме человека — 3 миллиарда. Чтобы только пробежать глазами по собственному генетическому тексту вам потребуется вся жизнь (три миллиарда секунд).

Генетическая программа каждого организма разбита на отдельные гены — подпрограммы, отвечающие за определенную часть жизни клетки. У бактерий от полутысячи до почти десяти тысяч генов, а у человека, мыши и слона лишь немногим больше — 30–40 тысяч. В каждый момент времени в клетке работает лишь небольшая часть генов, необходимых для жизнедеятельности в данной конкретной ситуации, остальные «молчат».

Как у человека, так и у бактерии ген состоит из структурной и регуляторной части. В структурной записана информация о составе синтезируемого с этого гена белка, который, взаимодействуя с другими белками, участвует в построении клеточных структур и проведении биохимических реакций. В регуляторной части записано, когда и при каких условиях данный белок должен синтезироваться.

На структурную часть генов у бактерий приходится 80–90% ДНК, остальная ДНК участвует в регуляции работы генов. У человека ситуация принципиально отличается. Кодирующие белок участки генома занимают меньше 3%, тогда как остальная часть выполняет регуляторные и другие, пока неизвестные функции. Система регуляции работы генов человека (и других млекопитающих) гораздо сложнее. Никаких уникальных биохимических процессов клетки человека не проводят, зато те процессы (общие для всего живого мира), которые идут, включаются и выключаются в нужное время и в нужной части тела в соответствии с генетической программой. Например, перед человеческим геном, контролирующим переработку лактозы, найдены два регуляторных участка. Один определяет место, другой — время работы гена. Первый указывает, что ген должен работать только в клетках слизистой кишечника, ведь именно здесь расщепляются поступившие с пищей сахара. Второй полностью отключает работу гена по окончании периода грудного вскармливания (у человека в возрасте 3–5 лет), так как в естественных условиях детеныши млекопитающих получают лактозу только с материнским молоком, а взрослым особям фермент не нужен. Однако у некоторых людей в этом регуляторном участке имеется мутация, которая «разрешает» синтез фермента у взрослых. Такие люди могут пить молоко, тогда как у носителей исходного, немутантного варианта молоко не усваивается, что приводит к расстройству пищеварения.

Записанная в генах человека программа развития реализуется в процессе роста и деления клеток, от первого деления зародышевой клетки до последнего вздоха на жизненном пути. Судьба каждой клетки — станет ли она клеткой эпителия или превратится в нейрон, лейкоцит или эритроцит — определяется тем, какие группы генов в ней работают. Постоянно работают во всех клетках только так называемые гены «домашнего хозяйства» — то есть те, которые заняты синтезом клеточных структур, производством энергии, ремонтом молекулы ДНК. Большая же часть генов обычно бездействует, и необходимы специальные сигналы для того, чтобы они активизировались. Например, гены, контролирующие форму тела, расположены на хромосомах несколькими блоками, причем идут один за другим в том же порядке, в каком и контролируемые ими части тела: сначала гены, которым положено работать в голове, потом гены грудного отдела, потом те, которые определяют развитие задней части тела. Включаются они по очереди. Причем эти свойства генов «домашнего хозяйства» присущи и человеку, и животным. Так, в экспериментах на мухах показано, что если порядок включения генов нарушен, то могут получиться монстры, каких не придумать и Спилбергу, — с дополнительными ногами вместо антенн на голове или с глазами на брюшке и крыльях. У человека известные мутации (на латыни «мутация» означает «изменение») в этих генах также приводят к нарушениям — к изменению положения органов или, например, отсутствию некоторых зубов. Более серьезные нарушения останавливают развитие плода.

Хотя прочтена последовательность нуклеотидов всего генома человека, функции большинства генов по-прежнему неизвестны. Многие гены в нуклеотидной последовательности выявлены лишь с помощью компьютерного анализа (см. «КТ» # 413), и их существование следует подтвердить не вычислительными, а экспериментальными методами. Мы видим текст, но не понимаем, что он означает. Кроме знания структуры и функций генов, нужно еще представлять, чем отличается их работа в разных клетках и на разных этапах развития. И еще — знать, как взаимодействуют генные продукты. Порой утрата довольно больших фрагментов генома не приводит к заметным последствиям. А в других случаях замена всего лишь одной буквы из трех миллиардов приводит к тяжелому заболеванию.

Генные технологии

Теперь мы можем попытаться понять, каким образом генетики вмешиваются в работу наследственных программ. До появления биотехнологии и методов генной инженерии генетические изменения тоже, конечно, происходили, но шли они совершенно иными темпами. С очень значительными генетическими изменениями связана вся эволюция жизни на Земле, насчитывающая более трех миллиардов лет. От времени существования общего предка обезьяны и человека прошло пять миллионов лет, накопившиеся за это время изменения затронули 1,5% их генетических текстов. Селекционная работа, которую человек вел на протяжении десяти тысячелетий существования производящего хозяйства, также вызвала изменения геномов культурных растений и одомашненных животных, являвшихся объектом отбора. Да и сами люди были вынуждены приспосабливаться (в том числе и на генетическом уровне) к создаваемой ими самими среде обитания.

Заставить ген одного организма работать в геноме другого можно лишь при соблюдении определенных условий. Во-первых, к чужеродному гену следует «подшить» регуляторные элементы подходящего хозяйского гена с тем, чтобы он включился в нужное время в нужной ткани (например, чтобы его продукт секретировался в молоко у коровы), а также элементы, обеспечивающие его встраивание в геном или самостоятельное воспроизведение в хозяйской клетке. Во-вторых, нужно обеспечить систему введения генетической конструкции в клетки хозяина. Технологии «кройки и шитья» генов для всех одинаковы, а вот системы введения ДНК в клетки организма-хозяина сильно различаются. Сейчас такие системы отработаны и для микроорганизмов, и для растений, и для некоторых животных, причем существуют методы введения ДНК в клетки, размножаемые в пробирках, и методы, пригодные для модификации сформированного организма. Последние используют для генотерапии, то есть лечения наследственных болезней путем введения человеку «здоровых» генов.

Еще одно условие — работа гена не должна вредить самому организму-хозяину. Например, устойчивость трансгенного картофеля к колорадскому жуку обеспечена введением в растительный геном бактериального гена, контролирующего синтез белка, токсичного для насекомых (причем не для всех, а для определенной группы) и безвредного для растений, животных и человека. После генетической модификации полученный уникальный организм следует размножить. Для этого используется клонирование.

Клонирование

Клонирование (от греч. клон — ветвь, побег) — точное воспроизведение того или иного живого объекта в некотором количестве копий. Этим термином обозначают два совершенно разных процесса — клонирование (то есть получение идентичных копий) фрагментов ДНК и клонирование клеток взрослого организма (то есть получение группы клеток с одинаковым генотипом).
Клонирование фрагментов ДНК широко используется в молекулярной генетике, так как изучать небольшой участок (размером сотни или тысячи пар нуклеотидов) гораздо легче, чем целую хромосому. Для этого изучаемый фрагмент вводят в клетки микроорганизмов. В частности, в биотехнологии именно с помощью клонирования фрагментов ДНК в бактериях получают клетки, продуцирующие нужные медицине человеческие белки.

Клонирование растений всем известно — это размножение растений черенками. А эксперименты по клонированию животных впервые осуществили в начале 1950-х годов американские эмбриологи Роберт Бриггс и Томас Кинг (Robert Briggs, Thomas King), пересадившие ядро зрелой клетки лягушки в яйцеклетку, собственное ядро которой было удалено. В России такие эксперименты были проведены даже несколько раньше Георгием Лопашевым, но его результаты не были опубликованы из-за преследований генетиков в сталинское время. Английскому ученому Джону Гердону (John Gurdon) удалось усовершенствовать методику и добиться того, что из 1–2% яйцеклеток с пересаженным ядром вывелись лягушата. Из остальных яйцеклеток или развивались дефектные эмбрионы, или не развивались вообще — слишком велики были повреждения во время операции по пересадке ядер. Если можно клонировать лягушку, то почему не попробовать сделать это и с другими животными?

В 1997 году появилось сенсационное сообщение о том, что в лаборатории Яна Вилмута (Ian Willmut, Эдинбург, Шотландия) разработан метод клонирования млекопитающих. Эксперименты проводились на овце. Ядро из клетки молочной железы взрослой особи ввели в яйцеклетку с удаленным ядром и затем активировали ее посредством электрического удара. Развивающиеся зародыши пересадили в матку приемной матери, где они оставались до рождения. Из 236 опытов успешным был только один, в результате которого родилась ставшая знаменитой овечка Долли. Позже появились сообщения о клонировании других млекопитающих — коровы, козы, мыши, свиньи.

В принципе, технически можно клонировать и человека, но в этом случае возникают моральные, этические и юридические проблемы. Но даже если удастся осуществить клонирование людей, получить личность, идентичную личности донора ядра, невозможно. Невозможно получить даже организм, полностью идентичный исходному по своим биологическим свойствам — для этого пришлось бы точно воспроизвести условия развития плода и рождения ребенка. А предположения о массовом производстве сверхгениев или сверхпослушных солдат не имеют под собой никаких оснований. Любые возможности, которые могут быть реализованы при клонировании, будут все равно лежать в границах возможностей человека как биологического вида./publicat/index.html.

Сообщения о клонировании животных и появляющиеся время от времени сообщения о якобы успешных попытках клонирования человека (которые пока ничем не подтверждены) привлекают огромное внимание публики. Опросы, проведенные в европейских странах фондом Progress Educational Trust (Лондон), показали, что об овечке Долли знают около 90% опрошенных, тогда как об имеющих гораздо большее значение для людей и уже применяемых на практике генодиагностике и генотерапии слышали лишь около половины. Похоже, что клонирование ассоциируется у неспециалистов с чем-то вроде возрождения душ и порождает страхи, подобные тем, что были высказаны участниками студенческого митинга в Беркли, во время Международного генетического конгресса (1973). Студенты пытались бойкотировать ученых, обвиняя их в попытках клонировать Ленина, Гитлера, Сталина, Мао Цзэдуна. Как правило, такие опасения возникают из-за недостатка информации. Для клонирования организмов нужны живые клетки. После смерти целостность ДНК нарушается, и она может быть использована для уже упоминавшегося молекулярного клонирования отдельных фрагментов, но никак не для воспроизведения генетически идентичного организма.

Геном человека как объект генных технологий

Геномы разных людей содержат одинаковые наборы генов, но их генетические тексты различаются. Различия составляют в среднем один нуклеотид на тысячу «букв» текста, то есть 0,1%. С генетическими различиями связаны видовые и индивидуальные биологические признаки каждого организма. Индивидуальные особенности человека затрагивают и устойчивость к инфекциям, и адаптацию к определенным климатическим условиям (в частности, цвет кожи является такой адаптацией), и приспособленность к тому или иному типу питания. Образ жизни, к которому человек генетически и физиологически не приспособлен (включая климатические условия, уровень физической активности, диету), ведет к болезням. Некоторые болезни можно вылечить или предотвратить, меняя среду или образ жизни. Всем известен «бег от инфаркта». Но есть наследственные заболевания, проявляющиеся вскоре после рождения ребенка и до недавнего времени неизлечимые.

Понимание молекулярных основ развития организма в норме и при патологии позволяет разработать принципиально новые подходы к лечению и профилактике заболеваний. Полученная при расшифровке генома человека информация уже привела к созданию систем диагностики для нескольких сотен наследственных заболеваний. Еще двадцать лет назад для большинства из них в справочниках указывалось «исходное нарушение, приводящее к развитию заболевания, неизвестно». Понимание закономерностей работы генов позволяет обнаружить болезнь еще до проявления симптомов. Во многих случаях раннее начало профилактического лечения позволяет предотвратить развитие заболевания или отодвинуть начало его проявления. Например, у одного из десяти тысяч новорожденных встречается серьезное нарушение обмена веществ — фенилкетонурия. При этом заболевании недостает фермента, превращающего аминокислоту фенилаланин в другую аминокислоту — тирозин. У больных накапливается промежуточный продукт обмена фенилаланина — фенилпировиноградная кислота. Избыток ее приводит к поражению клеток мозга и умственной отсталости. Всех младенцев проверяют на наличие этого заболевания. Если оно выявлено, назначают специальную диету, которая позволяет избежать или в значительной мере смягчить развитие симптомов.

Диагностика может проводиться даже еще до рождения ребенка. Для этого на ранних сроках беременности отбирают небольшое количество околоплодной жидкости, содержащей клетки плода. Затем определяют, имеются ли нарушения в генетическом материале этих клеток и не содержатся ли в нем болезнетворные мутации. Такая диагностика может быть проведена еще до имплантации зародыша в матку, поэтому она называется преимплантационной.

Системы генодиагностики самых распространенных заболеваний, таких как болезнь Дауна, фенилкетонурия и др., введены в практику медико-генетического консультирования. Для некоторых заболеваний это позволило значительно снизить частоту рождения детей, обреченных на неизбежную мучительную смерть.

При выявлении генетических нарушений у плода врач предоставляет информацию о возможных рисках, но только родители могут решать, прерывать беременность или нет. Появление новых методов сделало необходимым обсуждение этических проблем и принятие соответствующих законов, защищающих права и достоинство человека, в том числе и в эмбриональном состоянии. В таких дискуссиях участвуют медики и генетики, представители общественных организаций, религиозные деятели, юристы, философы и специалисты по этике.

Разрабатывается новый метод лечения — генная терапия. Больным с генными нарушениями вводят генетический материал, который должен компенсировать исходный дефект. Хотя до широкого применения метода еще далеко, однако основания для оптимизма есть. Например, в 1990 году американский генетик Андерсон (W.F. Anderson) успешно применил генную терапию для лечения девочки с тяжелыми врожденными нарушениями иммунитета.

Большое внимание привлекают исследования по генетике рака. Рак может возникать как под воздействием внешних причин (канцерогенов или вирусов), так и при повреждении генетического аппарата клетки. Найдены гены, мутации в которых повышают риск развития злокачественных преобразований, в частности рака груди. Это позволило проводить диагностику предрасположенности к развитию некоторых форм рака. При лечении онкологических заболеваний может быть эффективна генотерапия. Но разрабатываются и другие направления — например, получение вакцин против рака. В 2001 году начаты испытания вакцины, предотвращающей заражение папилломавирусом — одним из основных агентов, вызывающих рак шейки матки (вирус передается половым путем, и формально этот вид рака можно рассматривать как венерическое заболевание). Если они будут успешны, то в ближайшие годы будет получена вакцина против рака шейки матки — второй по распространенности среди 20–30-летних женщин форм рака.

Задолго до появления генотерапии люди стремились к улучшению породы. В древней Спарте «неправильных» младенцев сбрасывали со скалы. В 30-х годах в США с той же целью было подвергнуто принудительной стерилизации около ста тысяч человек, носителей определенных, утвержденных государством признаков. Такие меры бессмысленны с точки зрения генетики, так как не снижают частоты проявления данных признаков в следующем поколении. На пороге третьего тысячелетия человечество стремится заплатить поменьше за свое благополучие — взять под контроль собственные генетические процессы и вносить в них коррективы не ценой жизни носителей неблагоприятных мутаций, а подправляя генетические тексты по собственному разумению, добываемому в геномных исследованиях.

Дополнительные материалы по теме: www.vigg.ru/humangenome

© ООО "Компьютерра-Онлайн", 1997-2024
При цитировании и использовании любых материалов ссылка на "Компьютерру" обязательна.