Архивы: по дате | по разделам | по авторам

Из аналога в цифру и обратно: немного теории…

Архив
автор : ДМИТРИЙ СИМАНЕНКОВ    10.08.1998

Сегодня подавляющее большинство звукозаписывающей и звуковоспроизводящей студийной аппаратуры и музыкальных синтезаторов представляет собой цифровые устройства. Все знают, что даже в обычном домашнем проигрывателе компакт-дисков имеется цифро-аналоговый преобразователь, а музыка на диске записана 16-битными числами. Однако как исходный звуковой и музыкальный материал (голос, классические музыкальные инструменты, электрогитары и т. д.), так и звук на выходе вашего музыкального центра - это аналоговые, а не цифровые сигналы. Таким образом, для современной индустрии звукозаписи ключевым моментом является преобразование аналоговых сигналов в цифровые и обратно. Давайте попробуем разобраться, как же осуществляются эти преобразования.

Аналоговый сигнал представляет собой непрерывный во времени и по амплитуде процесс, а его цифровое представление есть последовательность чисел. Преобразование аналогового сигнала в цифровой состоит из двух этапов: дискретизации по времени и квантования по амплитуде. Дискретизация по времени означает, что сигнал представляется рядом своих отсчетов, взятых через равные промежутки времени. Например, когда мы говорим, что частота дискретизации равна 44,1 кГц, это значит, что сигнал измеряется 44100 раз в течение секунды. Основной задачей на первом этапе преобразования аналогового сигнала в цифровой (оцифровки) является выбор частоты дискретизации аналогового процесса. Решить ее помогает известная теорема Найквиста, утверждающая, что для того, чтобы аналоговый (непрерывный по времени) сигнал, занимающий полосу частот от 0 до F Гц, можно было абсолютно точно восстановить по его отсчетам, частота дискретизации должна быть как минимум вдвое больше максимальной звуковой частоты F. Таким образом, если реальный аналоговый сигнал, который мы собираемся преобразовать в цифровую форму, содержит частотные компоненты от 0 Гц до 20 кГц, то частота дискретизации такого сигнала должна быть не меньше 40 кГц. Рассмотрим более подробно, что происходит с аналоговым сигналом и его спектром при дискретизации. На рис. 1 вы видите исходный аналоговый сигнал и его спектр.

Рис. 1. Аналоговый сигнал и его спектр.

Дискретизированный аналоговый сигнал показан на рис. 2.

Рис. 2 Дискретизированный сигнал.

В процессе дискретизации частотный спектр существенно изменяется. Исходный аналоговый сигнал обычно имеет спектр, в основном лежащий в полосе частот от 20 Гц до 20 кГц. Кроме того, обычно в сигнале содержатся помехи частотой до нескольких сот килогерц, вызванные трудно устранимыми наводками от промышленного и бытового электрооборудования. После дискретизации сигнал представляет собой последовательность узких импульсов разной амплитуды и с очень широким спектром - до нескольких мегагерц (математический факт: чем уже импульс, тем шире его спектр). Поэтому и в целом спектр такой последовательности импульсов расширяется до тех же нескольких мегагерц. Таким образом, спектр дискретизированного сигнала значительно шире спектра исходного аналогового сигнала.

Давайте подробнее рассмотрим, как формируется этот новый широкий спектр. Существует два важных процесса. Во-первых, свертка всего первоначального спектра аналогового сигнала, простирающегося примерно от 20 Гц до нескольких сот килогерц, внутрь полосы частот от 0 Гц до половины частоты дискретизации. Этот процесс изображен на рис. 3.

Рис. 3. Процесс свертки спектра внутрь частотного диапазона 0-20 кГц.

Свертка означает, что все составляющие исходного аналогового сигнала с частотами выше половины частоты дискретизации (а это в основном неслышимые помехи) попадают в слышимый человеческим ухом диапазон частот от 20 Гц до половины частоты дискретизации, то есть неслышимые помехи становятся слышимыми, и, таким образом, может резко ухудшиться отношение сигнал/шум.

Все это выглядит весьма непривычно, если не сказать, что вообще противоречит здравому смыслу! Получается, что происходит дискретизация высокочастотных сигналов с составляющими, лежащими значительно выше не только половины частоты дискретизации, но и самой частоты дискретизации. На первый взгляд, это даже противоречит упомянутой выше теореме Найквиста. Но взгляните на рис. 4, где показан процесс дискретизации высокочастотного синусоидального сигнала на более чем вдвое более низкой, чем у него, частоте дискретизации.

Рис. 4. Дискретизация высокочастотной синусоидальной помехи.

Хорошо видно, что период колебаний высокочастотной помехи более чем вдвое меньше, нежели период дискретизации. А период, как известно, обратно пропорционален частоте. Значит, частота помехи действительно больше частоты дискретизации. Кроме того, дискретные отсчеты (толстые черные столбики) высокочастотной помехи полностью совпадают с дискретными отсчетами некоторого низкочастотного сигнала (тонкая плавная кривая на рис. 4). Таким образом, после дискретизации высокочастотного сигнала мы получили низкочастотный сигнал. Это и есть эффект свертки высокочастотных помех внутрь частотного диапазона от 0 Гц до половины частоты дискретизации.

Второе изменение, которому подвергается спектр, заключается в его расширении. Этот факт уже не противоречит здравому смыслу и вполне очевиден. Как уже было сказано, относительно низкочастотный исходный аналоговый сигнал в процессе дискретизации преобразуется в последовательность очень узких импульсов. Так как они имеют широкий спектр, то и вся последовательность, разумеется, будет иметь широкий спектр. Вследствие того что весь исходный спектр свернулся в полосу частот от 0 Гц до половины частоты дискретизации, логично и естественно, что расширение спектра происходит дублированием спектра из полосы от 0 Гц до половины частоты дискретизации на ширину спектра узкого импульса дискретов. То есть окончательно спектр дискретизированного сигнала есть несколько десятков сдвинутых по частоте копий спектров, полученных в результате свертки спектра исходного аналогового сигнала внутрь полосы частот от 0 Гц до половины частоты дискретизации (рис. 5.).



Рис. 5. Исходный спектр и спектр сигнала, дискретизированного на частоте 4 кГц.

Итак, реальные аналоговые сигналы часто содержат высокочастотные составляющие, "плохо" оцифровывающиеся на стандартных частотах 44,1 кГц или 48 кГц. Можно использовать и более высокую частоту дискретизации, но пропорционально увеличению частоты возрастет:

а) интенсивность потока цифровых данных (а возможности каналов S/PDIF, шин IDE или SCSI не безграничны, особенно если записывается или воспроизводится несколько каналов одновременно);

б) вычислительная нагрузка на цифровые процессоры эффектов, как-то: ревербератор, хорус, флэнжер и т. д.; их вычислительные возможности также не безграничны;

в) объем памяти, требующейся для хранения цифрового сигнала.

Поэтому перед дискретизацией нужно провести аналоговую фильтрацию, которая представляет собой довольно сложную задачу. Аналоговые фильтры не могут пропустить, скажем, все частоты от 0 Гц до 24 кГц и подавить все частоты выше 24 кГц. Аналоговый фильтр низких частот подавляет высокие частоты, начиная с некоторой частоты, называемой частотой среза. Подавление плавно усиливается с ростом частоты. Поэтому, чтобы добиться отсутствия частот выше 24 кГц, нужно устанавливать частоту среза фильтра равной примерно 16-20 кГц, а это уже плохо, так как будут ослаблены полезные частоты в слышимом человеческим ухом диапазоне 16-20 кГц.

Кроме того, еще одна неприятность заключается в том, что чем уже мы пытаемся сделать переходную область между полосой пропускания и полосой подавления, тем сильнее вносимые фазовые искажения, дольше переходный процесс (фильтр начинает "звенеть"), и тем сложнее и капризнее в настройке такой аналоговый фильтр.

В современных АЦП эта проблема решается методом оверсэмплинга (oversampling) - дискретизации на повышенной частоте. По этому методу диапазон частот входного аналогового сигнала ограничивается с помощью сравнительно несложного аналогового фильтра. Причем частота среза фильтра выбирается значительно выше полезной высшей частоты, а переходная полоса фильтра делается достаточно широкой. Таким образом, исключаются и завал полезных высших частот, и фазовые искажения, характерные для аналоговых фильтров с узкой переходной полосой.

Далее, отфильтрованный, с ограниченным по частоте спектром, сигнал дискретизируется на достаточно высокой частоте, исключающей наложение и искажение спектра (алиазинг). Затем дискретные отсчеты сигнала преобразуются в последовательность чисел с помощью АЦП. После этого мы имеем поток цифровых данных, представляющих аналоговый сигнал, включая как полезные, так и нежелательные высокочастотные компоненты и помехи. Эти цифровые данные пропускаются через цифровой фильтр с очень узкой переходной полосой и очень большим подавлением нежелательных высокочастотных компонентов.

Сегодня расчет и создание таких цифровых фильтров, к тому же не вносящих никаких фазовых искажений, не представляет больших трудностей. После цифрового фильтра представленный в цифровом виде сигнал имеет спектр, правильно ограниченный по частоте. Применяя к такому сигналу теорему Найквиста, мы можем резко понизить частоту его дискретизации до удвоенной величины наивысшей полезной частотной составляющей, - чего мы и хотели добиться. Надо отметить, что часто цифровые фильтры размещаются в той же микросхеме, что и другие узлы АЦП, так что пользователь может не подозревать, какие сложные процессы протекают в АЦП!

Рис. 6. Дискретизация сигнала с оверсэмплингом.

Применяется дискретизация на повышенной частоте и в цифро-аналоговых преобразователях (ЦАП). В ЦАП также существует проблема сложности аналоговых восстанавливающих (интерполирующих) фильтров. Ведь сразу после простейшего ЦАП сигнал представляет собой серию узких импульсов, имеющих многочисленные алиазинговые спектральные компоненты. На аналоговый фильтр в этом случае возлагается задача полностью пропустить сигнал нужного частотного диапазона (скажем 0-24 кГц) и по возможности наиболее полно подавить ненужные высокочастотные компоненты. Конечно, чисто аналоговому фильтру выполнить такие противоречивые требования не под силу. Поэтому цифровой сигнал сначала интерполируют, то есть вставляют дополнительные отсчеты, вычисленные по специальным алгоритмам, и тем самым резко увеличивают частоту дискретизации. При этом исходный спектр полезного сигнала не искажается, но сигнал уже дискретизирован на значительно более высокой частоте. Это приводит к тому, что алиазинговые спектральные компоненты на выходе ЦАП далеко отстоят от частотных компонентов основного сигнала, и, чтобы отфильтровать их, достаточно простого аналогового фильтра.

Рассмотрим процесс реконструкции сигнала более подробно. При цифровом представлении в нашем распоряжении имеется информация о величине сигнала только в определенные моменты времени. Мы не имеем дополнительной информации о форме сигнала между отсчетами. Восстановление формы (или интерполяция) сигнала между отсчетами и является задачей цифро-аналогового преобразования. Интерполяция в современных ЦАП может выполняться нелинейными и линейными (цифровая фильтрация) методами в сочетании с аналоговыми (антиалиазинговыми) фильтрами высоких частот.

Простейшие нелинейные методы интерполяции вполне очевидны. Допустим, мы имеем несколько дискретных отсчетов синусоидального сигнала частотой 100 Гц, взятых через 1/350 секунды (с частотой 350 Гц), то есть частота дискретизации в три с половиной раза выше частоты синусоиды. Конечно, такое соотношение частоты сигнала и частоты дискретизации "лучше", чем теоретический предел 1:2, но будем усложнять задачу постепенно. Построим параболу через три последовательных отсчета. На рис. 7 вы видите высокую степень совпадения формы этой параболы и начальной формы синусоиды (соотношение частоты синусоиды и частоты дискретизации не имеет в данном случае принципиального значения, 1:3,5, или 1:4, или 1:3,75 существенным образом на вид картинки не повлияет).

Рис. 7. Параболическая интерполяция сигнала

Таким образом, построив параболу через три последовательных дискрета синусоиды и найдя все коэффициенты ее уравнения ax2 + bx + c, где a, b, c - коэффициенты, x - время, мы можем вычислить значение сигнала в любой момент времени между дискретами и интерполировать (реконструировать) сигнал между отсчетами с весьма высокой точностью. Оставшиеся небольшие искажения формы восстановленного сигнала (в данном случае синусоиды), по сути, являются нелинейными искажениями. То есть реконструированный сигнал состоит из суммы истинной синусоиды и нескольких ее гармоник.

Теперь очевидно, что уменьшить искажения формы восстановленного сигнала можно, просто отфильтровав эти высокочастотные гармоники (вторую, третью и т. д.). Цифровые и аналоговые фильтры, применяемые для этих целей даже в дешевых ЦАП, позволяют подавить вторую гармонику на 80 и более децибел. Это позволяет довести коэффициент нелинейных искажений формы реконструированного сигнала (математическое определение нелинейных искажений дано в моей статье о звуковых картах в "КТ" #243) до 0,01-0,02%. А это уже почти уровень hi-fi.

Чтобы получить аналогичные результаты для соотношения частоты сигнала и частоты дискретизации 1:3, нужно применять интерполяцию по четырем последовательным отсчетам гиперболой или использовать сплайны третьего порядка. Если задаться целью интерполировать сигналы, содержащие наивысшую частоту 20 кГц при частоте дискретизации 44,1 кГц, то есть для соотношения частоты сигнала и частоты дискретизации примерно 1: 2,2 при коэффициенте нелинейных искажений формы реконструированного сигнала не более 0,01%, то необходимо использовать кривые на основе полиномов 15-20-го порядка. При современном уровне развития схемотехники цифровых сигнальных процессоров (DSP) это вполне возможно, но несколько дороговато (такие DSP стоят больше 40 долларов).

Линейные методы восстановления формы сигналов по его дискретным отсчетам основаны на использовании цифровых фильтров с конечной и бесконечной импульсной реакцией. К сожалению, их работу невозможно объяснить столь же наглядно, как в случае с нелинейной интерполяцией. Поэтому предлагаю читателям, не имеющим высшего технического образования, довериться мне и принять все ниже сказанное как аксиому (любознательных отсылаю к книге В. Каппелини "Цифровые фильтры и их применение", 1983 год).

В исходную последовательность отсчетов сигнала между дискретами вставляются нулевые отсчеты. Новая полученная последовательность подается на интерполирующий цифровой фильтр. После него нулевые отсчеты "чудесным" образом превращаются в очень точно реконструированные отсчеты исходного сигнала. Затем для окончательного сглаживания и восстановления сигнал подается на простой аналоговый фильтр. Этот метод позволяет получить коэффициент нелинейных искажений формы реконструированного сигнала вплоть до 0,001% при соотношении высшей частотной составляющей сигнала и частоты дискретизации 1: 2,2 (для 20 кГц и 44,1 кГц). По методу цифровой фильтрации работают ЦАП, используемые в звуковых картах OPTi-931, Acer S23, AWE32/64, Turtle Beach Pinnacle, Crystal CS4232, Analog Devices AD1848, Monster Sound 3D и многих других.

Джиттер

Цифровые данные передаются посредством сигнала прямоугольной формы. Джиттером называются небольшие случайные изменения местоположения фронтов "прямоугольников" во времени. Это приводит к небольшим случайным изменениям скорости передачи цифровых данных. Например, если фронт имеет малую крутизну или "отстал" по времени, то цифровой сигнал как бы запаздывает. Цифровой джиттер влияет на воспроизведение звука подобно детонации - явлению, вызванному неравномерностью движения магнитной ленты в аналоговом магнитофоне вследствие несовершенства лентопротяжного механизма. Однако вносимые цифровым джиттером искажения гораздо заметнее искажений звука, вносимых детонацией. Видимо, это связано с большей "мягкостью" и "плавностью" детонационных искажений (можно сказать аналогового джиттера) благодаря эластичности магнитной ленты.

Иногда джиттер возникает из-за фазовых шумов петли ФАПЧ (фазовой автоподстройки частоты) устройства, синхронизируемого внешним сигналом. Он проявляется при прослушивании материала с записывающего устройства, синхронизируемого от воспроизводящего устройства. В современных цифровых системах звукозаписи и воспроизведения основным источником джиттера является АЦП. Нынешние студийные полностью цифровые синхронизаторы достаточно совершенны и часто вносят джиттер меньший, чем АЦП.

Рассмотрим, как образуется джиттер в АЦП. Частота дискретизации АЦП обычно задается кварцевым генератором, а любой кварцевый генератор (особенно дешевый) имеет ненулевые фазовые шумы. Таким образом, моменты времени получения отсчетов сигнала (дискретов) расположены на временной оси не совсем равномерно. Это приводит к размыванию спектра сигнала и ухудшению отношения сигнал/шум. Кроме того, на высокочастотных компонентах сигнала джиттер может привести к пульсации амплитуд. Для борьбы с этим явлением надо использовать высококачественные кварцевые генераторы с хорошо стабилизированными источниками питания. Читатели, уже использующие студии звукозаписи типа АЦП-IBM PC-CD, могут вообще не задумываться над этой проблемой. Для таких систем никакого дополнительного джиттера (не связанного с АЦП) вообще не существует. То есть если вы оцифровываете сигнал с помощью цифровой звуковой платы, сохраняете на жестком диске, обрабатываете с помощью программных средств типа WaveLab и потом записываете на компакт-диск с помощью CD-рекордеров, подключенных через SCSI- или IDE-интерфейс к вашему ПК, то никаких проблем с джиттером у вас никогда не будет.

Квантование амплитуды аналогового сигнала

Напомним, что преобразование аналогового сигнала в цифровой поток данных происходит в два этапа. Первый этап - это дискретизация сигнала на основе теоремы Найквиста с использованием оверсэмплинга. Второй этап -квантование амплитуды дискретных отсчетов, полученных на первом этапе.

Представим себе, что дискрет представляет собой некий столбик или полоску, наподобие той, что мы видим на студийном индикаторе уровня сигнала. Длина этой полоски и есть амплитуда сигнала в данном дискрете. Процесс квантования амплитуды тогда можно представить как измерение длины полоски с помощью линейки. Чем чаще метки на линейке, тем точнее мы можем измерить длину полоски (амплитуду) и тем меньше будут ошибки измерения (шумы квантования). Однако чем чаще расположены метки на линейке, тем больше бит нам потребуется для записи числа, соответствующего измеренной длине полоски. Например, если на линейке 32 метки, то для представления длины полоски в виде числа понадобится максимум 5 бит (25=32). В данном случае 5 бит и будет разрядностью АЦП.

Таким образом, процесс квантования амплитуд дискретов фактически заключается в измерении их величин по отношению к некоторому опорному источнику напряжения (линейка) и выражении этих величин в виде чисел, состоящих из конечного числа бит. Причем форма представления чисел зависит от конкретной реализации устройства АЦП. Довольно часто используется все же кодирование результатов измерения амплитуд дискретов в виде целых чисел. В обычном АЦП число бит на один дискрет (разрядность числа) выходного цифрового потока данных непосредственно с квантователя амплитуд дискретов равно числу бит на выходе АЦП, так как числа с квантователя амплитуд поступают непосредственно на выход устройства. Если входной аналоговый сигнал имеет вид белого шума, то ошибки квантования не зависят от него. Отношение сигнал/шум на выходе АЦП в этом случае (если все остальные элементы идеальны) будет равно 6N дБ, где N есть число бит на один дискрет или разрядность чисел, сопоставляемых величинам амплитуд дискретов. Например, для 16-битного АЦП с частотой дискретизации 44,1 кГц в идеальном случае шум квантования будет находиться на уровне -96 дБ, и спектр шума квантования будет равномерен (постоянен) в диапазоне 0-22,05 кГц. Если АЦП будет дискретизировать сигнал с большей частотой, то полная мощность шумов квантования останется неизменной, но его спектр будет шире (от 0 Гц до новой, большей частоты дискретизации, деленной на 2). Например, если частота дискретизации удваивается (88,2 кГц), то спектр шумов квантования будет простираться уже до 44,1 кГц (вместо 22,05 кГц). А наш полезный сигнал, конечно, будет иметь спектр (как и раньше), простирающийся от 0 Гц до 22,05 кГц, то есть спектр шума станет в два раза шире спектра сигнала при прежней мощности шума.

Таким образом, мощность шумов квантования "внутри" спектра полезного сигнала упадет вдвое. Другими словами, отношение сигнал/шум квантования в полосе 0-22,05 кГц улучшится вдвое (на 3 дБ)! Теперь с помощью цифрового фильтра с большим ослаблением шума в полосе задержания и узкой переходной полосой (а сделать такой цифровой фильтр не составляет большого труда) можно отфильтровать (подавить) полосу от 22,05 до 44,1 кГц, содержащую только шумы квантования, и получить лучшее на 3 дБ отношение сигнал/шумы квантования. Этот процесс можно продолжать. В случае 4-кратного увеличения частоты дискретизации (4-кратный оверсэмплинг) отношение сигнал/шум станет лучше на 6 дБ.

Судя по технической документации, на рынке можно встретить АЦП и со 128/256-кратным оверсэмплингом (плюс 21-24 дБ к исходному отношению сигнал/шум). По этому же принципу, если использовать 15-битный квантователь на частоте дискретизации 44,1х4 кГц, мы получим такое же отношение сигнал/шум, как и для 16-битного квантователя и частоты дискретизации 44,1 кГц. Так что в пределе, если возьмем 1-битный (!) квантователь на частоте дискретизации 44,1х415 кГц, то получим такое же качество АЦП, как и для 16-битного квантователя на частоте дискретизации 44,1 кГц. Далее, с помощью цифровых фильтров можно подавить все лишние частотные составляющие в полосе от 22,05 кГц до 44,1х415/2 кГц и в полном соответствии с теоремой Найквиста понизить частоту дискретизации до 44,1 кГц (с одновременным увеличением разрядности данных).

Таким образом, квантователь АЦП не обязательно должен иметь высокую разрядность, чтобы выходной поток цифровых данных АЦП тоже имел таковую. Увеличить эффективную разрядность АЦП можно, используя метод оверсэмплинга и цифровой фильтрации. Применение метода оверсэмплинга при цифро-аналоговом преобразовании также дает выигрыш. Для каждого двукратного увеличения частоты дискретизации входного потока, поступающего на ЦАП, разрядность чисел, представляющих амплитуду дискретов, может быть уменьшена на 1 бит без потери качества выходного аналогового сигнала, вплоть до получения однобитного ЦАП с качеством сигнала, например, 16-битного ЦАП.

Дизеринг

Реальные музыкальные сигналы далеки от белого шума. Из-за этого шумы квантования оказываются зависимыми от сигнала. Человеческое слуховое восприятие четко реагирует на это возникновением ощущения "грязного" звука. Особенно ярко этот эффект проявляется для 8-битных отсчетов сигнала. Другими словами, если громкость 16-битного сигнала уменьшится на 48 дБ (на 8 бит) от номинального уровня, то звук станет "грязным" и непригодным для прослушивания. С этим, я думаю, согласятся все! Кто же сейчас будет слушать 8-битный звук?!

То есть вместо отношения сигнал/шум 96 дБ для обычного 16-битного сигнала реальный динамический диапазон из-за эффекта зависимости шумов квантования от сигнала составляет всего 48 дБ! Чтобы запись в виде обычного (без дизеринга и нойз-шейпинга) 16-битного сигнала звучала всегда чисто, необходимо, чтобы ее уровень не уменьшался до такой степени, когда сигнал фактически становится 8-битным.

Таким образом, перед записью на компакт-диск исходный музыкальный материал должен быть компрессирован тем или иным способом с целью уменьшения его динамического диапазона и предотвращения "грязного" звучания на слишком малых уровнях громкости. Однако сжатие динамического диапазона исходного музыкального материала, достигающего порой ста и более децибел (например, для электрогитары), на 48 дБ и более без заметных на слух искажений представляется крайне сложной (если вообще выполнимой) задачей. А иногда и художественное содержание музыкального произведения требует чередования громких и очень тихих звуков, и, следовательно, искусственное сжатие динамического диапазона неприемлемо. В таких случаях применяется дизеринг, позволяющий частично "обменять" эффект грязного звучания на незначительное увеличение высокочастотного шума. Метод дизеринга заключается в добавлении небольшого шумового (обычно высокочастотного) сигнала во входной сигнал АЦП или к цифровому сигналу в момент перехода от оцифрованного с разрядностью 20 и более бит исходного музыкального материала к 16-битному, предназначенному для записи на компакт-диск. Это приводит к независимости шумов квантования и сигнала, однако общий уровень шумов немного возрастает. С сервера www.geocities.com/SiliconValley/Pines/7899 вы можете скачать wav-файл с примером звука до дизеринга и после или самостоятельно с помощью программы WaveLab 2.0 определить на слух применимость этого метода для вашего конкретного музыкального материала.

Нойз-шейпинг

В результате процесса дискретизации и квантования (оцифровки или аналогово-цифрового преобразования) входного аналогового сигнала с применением дизеринга к сигналу добавляется шум квантования. Его спектр равномерен и занимает полосу от 0 Гц до половины частоты дискретизации. Равномерность по частоте и некоррелированность шума с сигналом достигается благодаря дизерингу, а также правилу квантования, согласно которому амплитуда в дискрете округляется до ближайшей опорной величины. Применение более сложных правил округления позволяет получить другие (неравномерные) спектральные характеристики шумов округления при сохранении полной мощности шумов неизменной. Учитывая, что человеческий слуховой аппарат имеет спад чувствительности на высоких частотах и на очень низких частотах, можно, используя специальные правила округления при квантовании, получить спектр шумов округления, большей частью сосредоточенный в области частот, которые наименее заметны на слух (выше 20 кГц). Частота дискретизации для АЦП с 256-кратным оверсэмплингом составляет около 11,2 МГц, и, следовательно, мы имеем возможность "переместить" весь шум квантования в область частот, практически неслышимую человеческим ухом (от 20 кГц до 5,6 МГц). Таким образом, можно значительно улучшить отношение сигнал/шум в диапазоне слышимых частот в цифровом сигнале, не увеличивая количество бит на один дискрет.

Применение нойз-шейпинга возможно и без перемещения шумов в неслышимую ухом высокочастотную область. Для этого при переходе от 20-24-битного исходного сигнала к 16-битному формируется спектр шумов квантования, имеющий форму, обратную кривой чувствительности слухового аппарата человека. То есть там, где наш слух наиболее чувствителен к шумам, кривая спектра мощности шумов будет иметь минимум, и, наоборот, там, где наш слух менее чувствителен к шуму, будет сосредоточен максимум шумов. Таким образом, особенно раздражающее слух шипение в области 3-4 кГц становится более мягким и незаметным, а "грязь" при небольших уровнях сигнала становится менее очевидной.

Вообще же к рекламным заявлениям фирм о колоссальном и драматическом улучшении звука после дизеринга, нойз-шейпинга и т. д. стоит относиться критически. Очевидно, что панацеи не существует, и именно поэтому безработица инженерам-акустикам пока не грозит.

Применение нойз-шейпинга при создании музыкальных компакт-дисков

Звуковой материал целесообразно оцифровать 20-24-битным АЦП на повышенной частоте дискретизации (скажем, 64-96 кГц, если ваш АЦП это позволяет). Затем произвести обработку полученного цифрового сигнала с помощью специального программного обеспечения (например, Deutsche Gramaphon's ABI или Sony's Super Bit Mapping, Waves), использующего компрессию, дизеринг и нойз-шейпинг (а также другие алгоритмы) для преобразования 20-24-битного цифрового потока данных в 16-битный цифровой поток. Таким образом, можно достичь субъективно лучшего отношения сигнал/шум на компакт-диске, хотя объективные измерения могут показать незначительное ухудшение этого параметра за счет увеличения мощности высокочастотных шумов.

С автором можно связаться по адресу digital_sound@bigfoot.com.

© ООО "Компьютерра-Онлайн", 1997-2024
При цитировании и использовании любых материалов ссылка на "Компьютерру" обязательна.